A Q&A with David Spigel, MD, Chief Scientific Officer, Director of the Lung Cancer Research Program, and Principal Investigator at Sarah Cannon Research Institute. Email: dspigel@tnonc.com
Q: You are an expert medical oncologist with particular interest in lung cancer. The various forms of lung cancer are serious diagnoses, all potentially lethal malignancies. There are theoretical, investigational, and clinical justifications to perform molecular testing of these tumors. In your opinion, should such testing target specific mutations, panels of genes, or use next-generation sequencing (NGS) for whole-exome or genome analysis? At what point in a patient’s disease should molecular testing be performed?
A: Caring for patients with lung cancer today requires broad NGS at diagnosis for stage IV disease. There are multiple potential targets, and spot testing for individual mutations is simply inefficient in my view. We need to test for mutations in EGFR, ROS, ALK, MET, and BRAF—and also TRK and PD-L1. HER2 is nearing similar importance, and others are not far behind. I need to know about mutations in these genes as soon as possible to make treatment decisions, not the least of which is deciding whether a patient will qualify for a clinical trial.
Q: What challenges do you and other oncologists face in getting the molecular tests you need?
A: It’s a bit ridiculous that we have local and “send out” testing, and each can be imperfect if the labs are not using NGS. Currently, blood has become the easiest for me to get the day I meet a patient, and it takes five to eight days for results. It gets the ball rolling so to speak. I have tissue tested by commercial vendors, but those results can take three to four weeks—and that’s simply too long to make treatment decisions for a lot of folks (and me).
In the future, we will need a one-stop shop that offers the best-in-class technology in the shortest amount of time with the least amount of material. I bet that will be blood. And lung cancer is just the first malignancy that makes the strongest case for broad upfront testing; there’s no reason this won’t be also true for every cancer we treat one day.
***
Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.